Part Number Hot Search : 
ANTXV2 CY8C2 GOG96014 07N561K 01500 HER1608G N5398 MPR083EJ
Product Description
Full Text Search
 

To Download MAX9050AEUK-T Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-1569; Rev 1; 1/00
Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs
General Description
The MAX9040-MAX9043 and MAX9050-MAX9053 feature combinations of low-power comparators and a precision voltage reference. Their operating voltage range makes them ideal for both +3V and +5V systems. The MAX9040/MAX9041/MAX9050/MAX9051 have a single comparator and reference consuming only 40A of supply current. The MAX9042/MAX9043/MAX9052/ MAX9053 have dual comparators and a reference, while consuming only 55A of supply current. Low-voltage operation and low supply current make these devices ideal for battery-operated systems. The comparators feature Rail-to-Rail(R) inputs and outputs, with a common-mode input voltage range that extends 250mV beyond the supply rails. Input bias current is typically 1.0pA, and input offset voltage is typically 0.5mV. Internal hysteresis ensures clean output switching, even with slow-moving input signals. The output stage features a unique design that limits supply current surges while switching, virtually eliminating supply glitches typical of many other comparators. This design also minimizes overall power consumption under dynamic conditions. The comparator outputs have rail-to-rail push-pull output stages that sink and source up to 8mA. The propagation delay is 400ns, even with the low operating supply current. The reference output voltage is set to 2.048V in the MAX9040-MAX9043 and to 2.500V in the MAX9050- MAX9053. These devices are offered in two grades: an A grade with 0.4% initial accuracy and 6ppm/C tempco, and a B grade with 1% initial accuracy and 100ppm/C tempco. The voltage reference features a proprietary curvature-correction circuit and lasertrimmed thin-film resistors. The series-mode references can sink or source up to 500A of load current.
Features
o Comparator + Precision Reference in SOT23 o +2.5V to +5.5V Single-Supply Operation (MAX9040-MAX9043) o Low Supply Current (MAX9042/43/52/53) 55A Quiescent 65A with 100kHz Switching o 400ns Propagation Delay o Rail-to-Rail Inputs o Rail-to-Rail Output Stage Sinks and Sources 8mA o Internal 3mV Hysteresis o Voltage Reference Offers 0.4% max Initial Accuracy (MAX90_ _A) 6ppm/C typ Temperature Coefficient Stable for 0 to 4.7nF Capacitive Loads
MAX9040-MAX9043/MAX9050-MAX9053
Ordering Information
PART TEMP. RANGE PINPACKAGE 5 SOT23-5 5 SOT23-5 6 SOT23-6 6 SOT23-6 8 SO 8 SO 8 MAX 8 MAX 8 SO 8 SO 10 MAX 10 MAX TOP MARK ADNV ADNX AAHF AAHH -- -- -- -- -- -- -- --
MAX9040AEUK-T -40C to +85C MAX9040BEUK-T -40C to +85C MAX9041AEUT-T* -40C to +85C MAX9041BEUT-T* -40C to +85C MAX9041AESA* MAX9041BESA* MAX9042AEUA MAX9042BEUA MAX9042AESA MAX9042BESA MAX9043AEUB MAX9043BEUB -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C
Applications
Precision Battery Management Window Comparators IR Receivers Level Translators Digital Line Receivers
Typical Operating Circuit appears at end of data sheet. Functional Diagrams appear at end of data sheet. Selector Guide appears at end of data sheet. Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
Ordering Information continued at end of data sheet. *Future product--contact factory for availability.
Pin Configurations
TOP VIEW
OUT 1 5 VCC
VEE 2
MAX9040 MAX9050
4 REF
IN+ 3
SOT23-5
Pin Configurations continued at end of data sheet. 1
________________________________________________________________ Maxim Integrated Products
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.
Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs MAX9040-MAX9043/MAX9050-MAX9053
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC to VEE) ....................................-0.3V to +6V All Other Pins ...................................(VEE - 0.3V) to (VCC + 0.3V) Output Short-Circuit Duration (OUT_, REF) .............Indefinite Short Circuit to Either Supply Continuous Power Dissipation (TA = +70C) 5-Pin SOT23 (derate 7.10mW/C above +70C)........571mW 6-Pin SOT23 (derate 8.70mW/C above +70C)........696mW 8-Pin MAX (derate 4.1mW/C above +70C) ...........330mW 10-Pin MAX (derate 5.6mW/C above +70C) .........444mW 8-Pin SO (derate 5.88mW/C above +70C)..............471mW Operating Temperature Range ...........................-40C to +85C Junction Temperature ......................................................+150C Storage Temperature Range .............................-65C to +150C Lead Temperature (soldering, 10s) .................................+300C
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS--A Grade (0.4% initial accuracy)
(VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER Supply Voltage Range (Note 2) SYMBOL VCC CONDITIONS MAX9040-MAX9043 MAX9050-MAX9053 MAX9040/MAX9041/ MAX9050/MAX9051 Supply Current ICC MAX9042/MAX9043/ MAX9052/MAX9053 VCC = 2.7V VCC = 5.0V VCC = 2.7V VCC = 5.0V TA = +25C TA = -40C to +85C 3.0 Specified common-mode range Specified common-mode range TA = +25C TA = -40C to +85C Specified common-mode range MAX9040-MAX9043, 2.5V VCC 5.5V MAX9050-MAX9053, 2.7V VCC 5.5V VCC = 5V VCC = 2.7V VEE - 0.25 VEE 52 55 55 80 80 80 2.5 VOUT = VEE or VCC VCC = 5V, ISINK = 8mA VCC = 2.7V, ISINK = 3.5mA VCC = 5V, ISOURCE = 8mA VCC = 2.7V, ISOURCE = 3.5mA 4.45 2.3 95 35 0.2 0.15 4.85 2.55 0.55 0.4 pF mA V V 0.001 0.5 VCC + 0.25 VCC 10.0 MIN 2.5 2.7 40 45 55 60 0.5 TYP MAX 5.5 5.5 55 60 80 85 5.0 7.0 A UNITS V
COMPARATORS Input Offset Voltage (Note 3) Input Hysteresis Input Bias Current (Notes 4, 5, 6) Input Offset Current (Note 4) Common-Mode Voltage Range (Notes 4, 7) Common-Mode Rejection Ratio (Note 4) Power-Supply Rejection Ratio Input Capacitance (Note 4) Output Short-Circuit Current Output Voltage Low Output Voltage High VOS VHYST IB IOS CMVR CMRR PSRR CIN ISC VOL VOH Over entire commonmode range mV mV nA pA V
dB dB
2
_______________________________________________________________________________________
Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs
ELECTRICAL CHARACTERISTICS--A Grade (0.4% initial accuracy) (continued)
(VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER Output Rise/Fall Times Output Propagation Delay (Note 8) Power-Up Time VOLTAGE REFERENCE Output Voltage Output Voltage Temperature Coefficient (Note 9) Line Regulation Load Regulation Output Short-Circuit Current Thermal Hysteresis (Note 10) Long-Term Stability Noise Voltage Ripple Rejection Turn-On Settling Time EOUT VREF/ VCC tR(VREF) VREF TCVREF VREF/ VCC VREF/ IREF ISC THYST 1000h at TA = +25C f = 0.1Hz to 10Hz f = 10Hz to 10kHz VCC = 5V 100mV, f = 120Hz To VREF = 1% of final value 0 2.5V VCC 5.5V, MAX9040-MAX9043 2.7V VCC 5.5V, MAX9050-MAX9053 Sourcing: 0 IREF 500A Sinking: -500A IREF 0 VREF = VEE or VCC TA = +25C MAX9040-MAX9043 MAX9050-MAX9053 2.040 2.490 2.048 2.500 6 +50 +50 2 3.5 4 130 50 40 105 84 200 4.7 2.056 2.510 30 +200 +200 4 6 V ppm/C V/V V/A mA ppm ppm Vp-p VRMS dB s nF SYMBOL CL = 15pF tR/tF CL = 50pF CL = 200pF tPD+/tPDtPU CL = 15pF, VCC = 2.7V 50mV overdrive 100mV overdrive CONDITIONS MIN TYP 40 50 80 450 400 20 ns s ns MAX UNITS
MAX9040-MAX9043/MAX9050-MAX9053
Time to VOUT valid logic state
Capacitive Load Stability Range CL(VREF) (Note 6)
ELECTRICAL CHARACTERISTICS--B Grade (1% initial accuracy)
(VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER Supply Voltage Range (Note 2) SYMBOL VCC CONDITIONS MAX9040-MAX9043 MAX9050-MAX9053 MAX9040/MAX9041/ MAX9050/MAX9051 Supply Current ICC MAX9042/MAX9043/ MAX9052/MAX9053 VCC = 2.7V VCC = 5.0V VCC = 2.7V VCC = 5.0V MIN 2.5 2.7 40 45 55 60 130 100 A TYP MAX 5.5 5.5 UNITS V
_______________________________________________________________________________________
3
Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs MAX9040-MAX9043/MAX9050-MAX9053
ELECTRICAL CHARACTERISTICS--B Grade (1% initial accuracy) (continued)
(VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER COMPARATOR Input Offset Voltage (Note 3) Input Hysteresis Input Bias Current (Notes 4, 5, 6) Input Offset Current (Note 4) Common-Mode Voltage Range (Notes 4, 7) Common-Mode Rejection Ratio (Note 4) Power-Supply Rejection Ratio Input Capacitance (Note 4) Output Short-Circuit Current Output Voltage Low Output Voltage High VOS VHYST IB IOS CMVR CMRR PSRR CIN ISC VOL VOH VOUT = VEE or VCC VCC = 5V, ISINK = 8mA VCC = 2.7V, ISINK = 3.5mA VCC = 5V, ISOURCE = 8mA VCC = 2.7V, ISOURCE = 3.5mA CL = 15pF Output Rise/Fall Times Output Propagation Delay (Note 8) Power-Up Time VOLTAGE REFERENCE Output Voltage Output Voltage Temperature Coefficient (Note 9) Line Regulation Load Regulation Output Short-Circuit Current Thermal Hysteresis (Note 10) Long-Term Stability VREF TCVREF VREF/ VCC VREF/ lREF ISC THYST 1000h at TA = +25C 2.5V VCC 5.5V MAX9040-MAX9043 MAX9050-MAX9053 TA = +25C MAX9040-MAX9043 MAX9050-MAX9053 2.028 2.475 2.048 2.500 20 +50 +50 2 3.5 4 130 100 2.068 2.525 100 +200 +200 4 6 V ppm/C V/V V/mA mA ppm ppm tR/tF CL = 50pF CL = 200pF tPD+/tPDtPU CL = 15pF, VCC = 2.7V 50mV overdrive 100mV overdrive 4.45 VCC = 5V VCC = 2.7V Specified common-mode range MAX9040-MAX9043, 2.5V VCC 5.5V MAX9050-MAX9053, 2.7V VCC 5.5V Specified common-mode range Specified common-mode range VEE 52 55 55 80 80 80 2.5 95 35 0.2 0.15 4.85 2.55 40 50 80 450 400 20 ns ns s s ns 0.55 Over entire common-mode range 1 3.0 0.001 0.5 VCC 25.0 9.0 mV mV nA pA V dB dB pF mA V V SYMBOL CONDITIONS MIN TYP MAX UNITS
Time to VOUT valid logic state
Sourcing: 0 IREF 500A Sinking: -500A IREF 0 VREF = VEE or VCC
4
_______________________________________________________________________________________
Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs
ELECTRICAL CHARACTERISTICS--B Grade (1% initial accuracy) (continued)
(VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER Noise Voltage Ripple Rejection Turn-On Settling Time Capacitive Load Stability Range (Note 6) SYMBOL EOUT VREF/ VCC tR(VREF) CL(VREF) CONDITIONS f = 0.1Hz to 10Hz f = 10Hz to 10kHz VCC = 5V 100mV, f = 120Hz To VREF = 1% of final value 0 MIN TYP 40 105 84 200 4.7 MAX UNITS Vp-p VRMS dB s nF
MAX9040-MAX9043/MAX9050-MAX9053
Note 1: All devices are 100% production tested at TA = +25C. Limits over the extended temperature range are guaranteed by design, not production tested. Note 2: Supply voltage range guaranteed by PSRR test on comparator and line regulation of REF. Note 3: VOS is defined as the center of the input-referred hysteresis band. Note 4: For the comparators with the inverting input (IN-) uncommitted. Note 5: Input bias current is the average of the inverting and noninverting input bias currents. Note 6: Not production tested. Guaranteed by design. Note 7: Guaranteed by CMRR test. Note 8: VOVERDRIVE is beyond the offset and hysteresis determined trip point. Note 9: Temperature coefficient is measured by the box method; i.e., the maximum VREF is divided by the maximum T. Note 10: Thermal hysteresis is defined as the change in VREF at +25C before and after cycling the device from TMIN to TMAX.
Typical Operating Characteristics
(VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = +25C, unless otherwise noted.)
MAX9040/MAX9041/MAX9050/MAX9051 SUPPLY CURRENT vs. TEMPERATURE
MAX9040-3/50-3 toc01A
MAX9042/MAX9043/MAX9052/MAX9053 SUPPLY CURRENT vs. TEMPERATURE
MAX9040-3/50-3 toc01
MAX9040/MAX9041/MAX9050/MAX9051 SUPPLY CURRENT vs. SWITCHING FREQUENCY
MAX9040-3/50-3 toc02A
60 50 SUPPLY CURRENT (A) 40 30 20 10 0
VIN+ > VIN-
60 50 SUPPLY CURRENT (A) 40 30 20 10 0
VCC = +5.0V
VIN+ > VIN-
200
VCC = +5.0V
VCC = +2.7V
VCC = +2.7V
SUPPLY CURRENT (A)
150
100 VCC = +5.0V 50 VCC = +2.7V 0
-40
-20
0
20
40
60
80
-40
-20
0
20
40
60
80
0.01
0.1
1
10
100
1000
TEMPERATURE (C)
TEMPERATURE (C)
SWITCHING FREQUENCY (kHz)
_______________________________________________________________________________________
5
Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs MAX9040-MAX9043/MAX9050-MAX9053
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = +25C, unless otherwise noted.)
MAX9042/MAX9043/MAX9052/MAX9053 SUPPLY CURRENT vs. SWITCHING FREQUENCY
MAX9040-3/50-3 toc02
OUTPUT LOW VOLTAGE vs. OUTPUT SINK CURRENT
MAX9040-3/50-3 toc03
OUTPUT HIGH VOLTAGE vs. OUTPUT SOURCE CURRENT
OUTPUT HIGH VOLTAGE (VCC - VOH) (mV) VIN+ > VIN1000 VCC = +2.7V 100 VCC = +5.0V 10
MAX9040-3/50-3 toc04
250
10,000
VIN+ < VIN-
10,000
200 SUPPLY CURRENT (A)
1000 VCC = +2.7V VOL (mV) 100 VCC = +5.0V 10
150
100 VCC = +5.0V 50 0 0.01 0.1 1 10 100 1000 SWITCHING FREQUENCY (kHz) VCC = +2.7V
1 0.1 0.01 0.1 1 10 OUTPUT SINK CURRENT (mA)
1 0.1 0.01 0.1 1 10 OUTPUT SOURCE CURRENT (mA)
OUTPUT SHORT-CIRCUIT CURRENT vs. TEMPERATURE
MAX9040-3/50-3 toc05
OUTPUT SHORT-CIRCUIT CURRENT vs. TEMPERATURE
MAX9040-3/50-3 toc06
PROPAGATION DELAY vs. CAPACITIVE LOAD (VCC = 2.7V)
VOD = 50mV 550 tPD+ TO VOUT = 50% OF FINAL VALUE tPD- TO VOUT = 50% OF FINAL VALUE
MAX9040-3/50-3 toc07
120 100 80 60 40 20 0 -40 -20 0 20 40 60 80 TEMPERATURE (C) VIN+ > VINOUT SHORTED TO VEE VCC = +5.0V
100 OUTPUT SOURCE CURRENT (mA) VIN- > VIN+ OUT SHORTED TO VCC 80 VCC = +5.0V
600
OUTPUT SINK CURRENT (mA)
40 VCC = +2.7V 20
tPD (ns)
60
500
450 tPD+ TO VOUT = 10% OF FINAL VALUE 400 tPD- TO VOUT = 10% OF FINAL VALUE 0 100 200 300 400 500 600 700 800 900 1000 CAPACITIVE LOAD (pF)
VCC = +2.7V
0 -40 -20 0 20 40 60 80 TEMPERATURE (C)
350
PROPAGATION DELAY vs. CAPACITIVE LOAD (VCC = 5V)
MAX9040-3/50-3 toc08
PROPAGATION DELAY vs. TEMPERATURE
VOD = 50mV 600 550 tPD (ns) 500 450 400 350 300 tPD+ TO VOUT = 10% OF FINAL VALUE tPD- TO VOUT = 50% OF FINAL VALUE tPD+ TO VOUT = 50% OF FINAL VALUE
MAX9040-3/50-3 toc09
650 600 550 tPD (ns) 500 450 400 350 300
VOD = 50mV
tPD+ TO VOUT = 50% OF FINAL VALUE tPD+ TO VOUT = 10% OF FINAL VALUE
650
tPD- TO VOUT = 50% OF FINAL VALUE tPD- TO VOUT = 10% OF FINAL VALUE
tPD- TO VOUT = 10% OF FINAL VALUE -40 -20 0 20 40 60 80
0 100 200 300 400 500 600 700 800 900 1000 CAPACITIVE LOAD (pF)
TEMPERATURE (C)
6
_______________________________________________________________________________________
Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = +25C, unless otherwise noted.)
MAX9040-MAX9043/MAX9050-MAX9053
PROPAGATION DELAY vs. INPUT OVERDRIVE
MAX9040-3/50-3 toc10
PROPAGATION DELAY (tPD+)
MAX9040-3/50-3 toc11
PROPAGATION DELAY (tPD-)
A
MAX9040-3/50-3 toc12
900 800 700 tPD (ns) 600 tPD+, VCC = 5.0V 500 tPD+, VCC = 2.7V 400 300 200 0 tPD-, VCC = 5.0V tPD-, VCC = 2.7V
A
B 100ns/div A = IN+, 50mV/div B = OUT, 2V/div
B 100ns/div A = IN+, 50mV/div B = OUT, 2V/div
20 40 60 80 100 120 140 160 180 200 INPUT OVERDRIVE (mV)
SWITCHING CURRENT (OUT RISING EDGE)
MAX9040-3/50-3 toc13
SWITCHING CURRENT (OUT FALLING EDGE)
MAX9040-3/50-3 toc14
POWER-UP DELAY (OUT)
MAX9040-3/50-3 toc15
A
A
A
B B
C C 100ns/div A = IN+, 100mV/div B = OUT, 5V/div C = ICC, 1mA/div 100ns/div A = IN+, 100mV/div B = OUT, 5V/div C = ICC, 1mA/div
B
5s/div A = VCC, 2V/div B = OUT, 1V/div
POWER-UP DELAY (REF)
MAX9040-3/50-3 toc16
INPUT BIAS CURRENT vs. INPUT VOLTAGE
MAX9040-3/50-3 toc17
REFERENCE OUTPUT VOLTAGE TEMPERATURE DRIFT
0.75 0.50 0.25 0 -0.25 -0.50 -0.75 THREE TYPICAL PARTS NORMALIZED TO +25C
MAX9040-3/50-3 toc18
0.003
VIN- = +2.0V
1.00 OUTPUT VOLTAGE CHANGE (mV)
A
INPUT BIAS CURRENT (nA)
0.002
IB+ IB-
B
0.001
C
0 100s/div A = VCC, 2V/div B = REF, 1V/div C = REF, 50mV/div, 2.048V OFFSET 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIN+ (V)
-1.00 -40 -20 0 20 40 60 80 TEMPERATURE (C)
_______________________________________________________________________________________
7
Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs MAX9040-MAX9043/MAX9050-MAX9053
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = +25C, unless otherwise noted.)
LINE REGULATION
MAX9040-3/50-3 toc19
LOAD REGULATION
REFERENCE OUTPUT VOLTAGE CHANGE (V) TA = +85C 1500 1000 500 0 -500 TA = -40C TA = +25C
MAX9040-3/50-3 toc20
REFERENCE OUTPUT VOLTAGE CHANGE (V)
150 100 50 0 TA = +25C -50 TA = -40C -100 -150 -200 2.5 3.0 3.5 4.0 4.5 5.0 TA = +85C
2000
-1000 -1500
5.5
-500
-300
-100
100
300
500
INPUT VOLTAGE (V)
LOAD CURRENT (A)
Pin Description
PIN MAX9040 MAX9050 SOT23-5 1 2 3 4 5 -- -- -- -- -- -- -- -- 8 MAX9041 MAX9051 SOT23-6 1 2 3 5 6 4 -- -- -- -- -- -- -- SO 6 4 3 1 7 2 5, 8 -- -- -- -- -- -- MAX9042 MAX9052 SO/MAX -- 4 -- 2 8 -- -- 1 3 5 6 7 -- MAX9043 MAX9053 MAX -- 5 -- 2 10 -- 9 1 4 6 7 8 3 OUT VEE IN+ REF VCC INN.C. OUTA INA+ INB+ INBOUTB INAComparator Output Negative Supply Voltage Comparator Noninverting Input Reference Voltage Output Positive Supply Voltage Comparator Inverting Input No Connection. Not internally connected. Comparator A Output Comparator A Noninverting Input Comparator B Noninverting Input Comparator B Inverting Input Comparator B Output Comparator A Inverting Input NAME FUNCTION
_______________________________________________________________________________________
Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs
Detailed Description
The MAX9040-MAX9043 and MAX9050-MAX9053 feature single/dual, low-power, low-voltage comparators and a precision voltage reference. They operate from a single +2.5V to +5.5V (MAX904_) or +2.7V to +5.5V (MAX905_) supply. The single comparators with reference (MAX9040/MAX9041/MAX9050/MAX9051) consume only 40A of supply current, while the dual comparators with reference (MAX9042/MAX9043/ MAX9052/MAX9053) consume only 55A of supply current. Their common-mode input range extends 0.25V beyond each rail. Internal hysteresis ensures clean output switching, even with slow-moving input signals. The output stage employs a unique design that minimizes supply current surges while switching, virtually eliminating the supply glitches typical of many other comparators. Large internal output drivers allow rail-torail output swing that can sink and source up to 8mA of current. The precision reference uses a proprietary curvaturecorrection circuit and laser-trimmed thin-film resistors, resulting in a temperature coefficient of less than 30ppm/C over the extended temperature range and initial accuracy of 0.4% (A grade). The reference output voltage is set to 2.048V in the MAX9040-MAX9043 and to 2.500V in the MAX9050-MAX9053. age is between the supply rails. Comparator inputs are protected from overvoltage by internal body diodes connected to the supply rails. As the input voltage exceeds the supply rails, these body diodes become forward biased and begin to conduct. Consequently, bias currents increase exponentially as the input voltage exceeds the supply rails.
MAX9040-MAX9043/MAX9050-MAX9053
Comparator Output Stage Circuitry
The comparators in these devices contain a unique output stage capable of rail-to-rail operation with loads up to 8mA. Many comparators consume orders-of-magnitude more current during switching than during steady-state operation. However, with this family of comparators, the supply current change during an output transition is extremely small. The Typical Operating Characteristics graph Supply Current vs. Switching Frequency shows the minimal supply current increase as the output switching frequency approaches 1MHz. This characteristic reduces the need for power-supply filter capacitors to reduce glitches created by comparator switching currents. Another advantage realized in high-speed, battery-powered applications is a substantial increase in battery life.
Applications Information
Additional Hysteresis
These comparators have 3mV internal hysteresis. Additional hysteresis can be generated with two resistors using positive feedback (Figure 1). Use the following procedure to calculate resistor values: 1) Calculate the trip points of the comparator using these formulas:
V CC - VREF R2 VTH = VREF + R1 + R2
Comparator Input Stage Circuitry
The devices' input common-mode range extends from (VEE - 0.25V) to (VCC + 0.25V). These comparators may operate at any differential input voltage within these limits. Input bias current is typically 1.0pA if the input volt-
R1
VCC
(
)
R2 VREF
VCC IN+ OUT
and
R2 VTL = VREF 1 - R1 + R2
VIN
IN-
MAX9040-9043 MAX9050-9053
VEE
VTH is the threshold voltage at which the comparator switches its output from high to low as V IN rises above the trip point. VTL is the threshold voltage at which the comparator switches its output from low to high as VIN drops below the trip point. 2) The hysteresis band will be: VHYS = VTH - VTL = VCC
R1 + R2 R2
Figure 1. Additional Hysteresis
_______________________________________________________________________________________
9
Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs MAX9040-MAX9043/MAX9050-MAX9053
Board Layout and Bypassing
VCC VCC VIN 10k IN+ OUT INVEE MAX9040-9043 MAX9050-9053
Power-supply bypass capacitors are not typically needed, but would be called for in cases where supply impedance is high, supply leads are long, or excessive noise is expected on the supply lines. Use 100nF bypass capacitors under these conditions. Minimize signal trace lengths to reduce stray capacitance.
Reference Output/Load Capacitance
The MAX904_/MAX905_ do not require an output capacitor on REF for frequency stability. They are stable for capacitive loads up to 4.7nF. However, in applications where the load or the supply can experience step changes, an output capacitor will reduce the amount of overshoot (or undershoot) and assist the circuit's transient response. When an application is not subject to transient conditions, the REF capacitor can be omitted.
0.1F
Figure 2. Time Averaging of the Input Signal for Data Recovery
3) In this example, let VCC = +5V and VREF = +2.5V.
R2 VTH = 2.5 + 2.5 R1 + R2
Biasing for Data Recovery
Digital data is often embedded into a bandwidth- and amplitude-limited analog path. Recovering the data can be difficult. Figure 2 compares the input signal to a time-averaged version of itself. This self- biases the threshold to the average input voltage for optimal noise margin. Even severe phase distortion is eliminated from the digital output signal. Be sure to choose R1 and C1 so that fCAR >> 1 2R1C1
and
R2 VTL = 2.5 1 - R1 + R2
4) Select R2. In this example, we will choose 1k. 5) Select VHYS. In this example, we will choose 50mV. 6) Solve for R1.
R2 VHYS = VCC R1 + R2 1000 0.050 = 5 R1 +1000
where fCAR is the fundamental carrier frequency of the digital data stream.
Chip Information
MAX9040/41/50/51 TRANSISTOR COUNT: 204 MAX9042/43/52/53 TRANSISTOR COUNT: 280
where R1 100k, VTH = 2.525V, and VTL = 2.475V.
10
______________________________________________________________________________________
Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs
Selector Guide
PART MAX9040 MAX9041 MAX9050 MAX9051 MAX9042 MAX9043 MAX9052 MAX9053 COMPARATORS PER PACKAGE 1 1 1 1 2 2 2 2 VREF (V) 2.048 2.048 2.500 2.500 2.048 2.048 2.500 2.500 REF Uncommitted REF Uncommitted REF/Uncommitted Uncommitted/Uncommitted REF/Uncommitted Uncommitted/Uncommitted IN- CONNECTIONS
MAX9040-MAX9043/MAX9050-MAX9053
Pin Configurations (continued)
TOP VIEW
OUT 1
6
VCC
REF 1 IN- 2
8 7
N.C. VCC OUT N.C.
OUTA 1 REF 2 INA+ 3
8 7
VCC OUTB INBINB+
OUTA 1 REF INA2 3 4 5
10 9
VCC N.C. OUTB INBINB+
VEE 2
MAX9041 MAX9051
5
REF IN+ 3
MAX9041 MAX9051
6 5
MAX9042 MAX9052
6 5
MAX9043 MAX9053
8 7 6
INA+ VEE
IN+ 3
4
IN-
VEE 4
VEE 4
SOT23-6
SO
MAX/SO
MAX
Ordering Information (continued)
PART TEMP. RANGE PINPACKAGE 5 SOT23-5 5 SOT23-5 6 SOT23-6 6 SOT23-6 8 SO 8 SO 8 MAX 8 MAX 8 SO 8 SO 10 MAX 10 MAX TOP MARK ADNW ADNY AAHG AAHI -- -- -- -- -- -- -- --
ININ+ VIN
Typical Operating Circuit
VCC
MAX9050AEUK-T -40C to +85C MAX9050BEUK-T -40C to +85C MAX9051AEUT-T* -40C to +85C MAX9051BEUT-T* -40C to +85C MAX9051AESA* MAX9051BESA* MAX9052AEUA MAX9052BEUA MAX9052AESA MAX9052BESA MAX9053AEUB MAX9053BEUB -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C
VCC
0.1F OUT
REF 2.048V/2.500V VEE
MAX9041/9043 MAX9051/9053
*Future product--contact factory for availability. ______________________________________________________________________________________ 11
Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs MAX9040-MAX9043/MAX9050-MAX9053
Functional Diagrams
OUTA OUT VEE REF MAX9042 MAX9052
VCC
OUTB
VCC
REF
INA+ REF
INB-
IN+ MAX9040 MAX9050
REF
VEE
INB+
OUT REF
VEE
OUTA
MAX9043 MAX9053
REF
VCC
OUTB
REF VCC INAINA+ REF IN+ MAX9041 MAX9051 INVEE INB+ INB-
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 (c) 2000 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.


▲Up To Search▲   

 
Price & Availability of MAX9050AEUK-T

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X